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Imaginary Kapitza pendulum
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We extend the theory of Kapitza stabilization within the complex domain, i.e., for the case of an imaginary
oscillating potential. At a high oscillation frequency, the quasienergy spectrum is found to be entirely real valued;
however, a substantial difference with respect to a real potential emerges, that is, the formation of a truly bound
state instead of a resonance. The predictions of the Kapitza averaging method and the transition from a complex
to an entirely real-valued quasienergy spectrum at high frequencies are confirmed by numerical simulations of
the Schrödinger equation for an oscillating Gaussian potential. An application and a physical implementation of
the imaginary Kapitza pendulum to the stability of optical resonators with variable reflectivity is discussed.
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I. INTRODUCTION

The Kapitza (or dynamical) stabilization effect refers to
the possibility for a classical or quantum particle to be
trapped by a rapidly oscillating potential in cases where the
static potential cannot trap them [1]. It was first explained
and demonstrated in classical physics by Kapitza in 1951,
who showed that an inverted pendulum can be stabilized
by the addition of a vertical vibration [2]. Later nonlinear
and quantum analogs of this phenomenon were studied in
several papers [3–6] and found important applications, for
example, in Paul traps for charged particles [7], in driven
bosonic Josephson junctions [8], and in nonlinear dispersion
management and diffraction control of light in optics [3,9].
The main result underlying Kapitza stabilization is that the
motion of a classical or quantum particle in an external rapidly
oscillating potential can be described at leading order by
an effective time-independent potential, which shows a local
minimum (a well) while the nonoscillating potential does
not. While in the classical description the oscillation-induced
potential well introduces a locally stable fixed point of the
motion, in the quantum description stabilization is imperfect
since the effective potential does not sustain truly bound states,
rather resonance states with a finite lifetime owing to quantum
tunneling [6].

Kapitza stabilization has been studied so far only when the
potential is real. In recent years the physics and applications
of non-Hermitian systems has received increasing attention
[10,11], especially in the context of PT -symmetric systems
[12]. Such systems possess novel and unexpected physical
features. For instance they can be used for faster-than-
Hermitian evolution in a two-state quantum system [13].
Complex potentials can be experimentally realized in different
systems, including open two-level atomic systems interacting
with near-resonant light [14] and optical structures with gain
and loss regions [15].

In this work we extend the problem of the Kapitza pendulum
to non-Hermitian Hamiltonians, i.e., to the case of an imagi-
nary rapidly oscillating potential. In the classical description,
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an “imaginary” oscillating inertial force introduces two (rather
than one) stable fixed points. In the quantum description,
the quasienergy spectrum of the Hamiltonian turns out to be
entirely real valued in the high-frequency regime. As compared
to a real potential, the main distinctive feature here is that the
imaginary oscillating potential sustains a truly (Floquet) bound
state instead of a resonance state, i.e., stabilization is perfect
for the imaginary oscillating potential while it is imperfect for
the real oscillating potential.

II. IMAGINARY KAPITZA PENDULUM

We start with a short overview of the classical Kapitza-
pendulum problem [1]. Let us consider a rigid pendulum of
mass m and length l, and let us assume that its pivot point
is vibrating rapidly in the vertical direction, y0 = A cos(ωt)
[see Fig. 1(a)]. The Lagrangian of the system in the inertial
reference frame is given by L = Ek − Vp, where

Ek = ml2θ̇2

2
+ mAlωθ̇ sin ωt sin θ + mA2ω2

2
sin2(ωt),

(1a)

Vp = mg(l cos θ + A cos ωt) (1b)

are the kinetic and potential energies, respectively, g is the
gravitational acceleration, and θ is the angle between the
pendulum and the y axis. The equation of motion for the angle
θ , as obtained from the Euler-Lagrange equations, reads

θ̈ = sin θ

l
(g − Aω2 cos ωt). (2)

Following the idea of Kapitza [2], the variable θ can be written
as the sum of fast and slowly varying variables, namely, θ (t) =
θ0(t) + ξ (t), where θ0 is a slowly varying function over one
oscillation cycle and ξ is the rapidly oscillating part. The latter
is given by ξ = (A/l) sin θ cos ωt . After writing the equation
of motion for the “slow” component θ0 and averaging over the
rapid oscillations, we can derive an effective potential Veff for
θ0(t) [1],

Veff = mgl

(
cos θ + A2ω2

4gl
sin2 θ

)
. (3)

We see that for a proper choice of the parameter values, namely,
for A2ω2 > 2gl, Veff has two minima, a local minimum at
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FIG. 1. (Color online) Complex extension of the Kapitza pendulum. (a) A rigid pendulum with a vibrating pivot y0(t) = A cos(ωt).
(b) Effective potential Veff (in units mgl) for a real inertial force (A2ω2/gl = 10). (c) Effective potential for an “imaginary” inertial force
(A2ω2/gl = −10). (d) Complex trajectory for A/l = 0.1i and lω2/g = 1000. The initial condition is θ (0) = arccos 2gl/A2ω2 + 0.25 ≈ 2.02,
θ̇ (0) = 0, and is marked by the solid white dot. The dashed line shows the equilibrium position and the two dotted lines show the turning points
as determined by the effective potential shown in (c).

θ = 0 and a global minimum at θ = ±π ; see Fig. 1(b). This
result shows that the upper vertical stationary position θ = 0,
which is an unstable point for an ordinary pendulum, can
be stabilized when the suspension point of the pendulum
vibrates rapidly. We can generalize the Kapitza idea into
the complex domain by allowing the underlying potential
to become complex valued. Complex extensions of classical
mechanics and the strange dynamics of a classical particle
subject to complex forces and moving about in the complex
plane have been studied in several works [16], especially in
the context of PT -symmetric classical mechanics theory [12].
In our case, we extend the Kapitza pendulum into the complex
domain by allowing the noninertial force mÿ0 to become
imaginary. This corresponds to a change of the amplitude A

of oscillation into iA, which leads to a flip in the sign of the
second term in Eq. (3) and to changing the effective potential
Veff . Noticeably, the effective potential remains real-valued in
spite of the imaginary noninertial force. As compared to the
real Kapitza pendulum, in the imaginary Kapitza pendulum the
effective potential has two global minima in the nonintuitive
positions θ = ± arccos 2gl/A2ω2, see Fig. 1(c). Even though
the effective potential for the slow variable θ0 is real valued,
the trajectory of θ (t) occurs in the complex plane owing
to the rapidly varying component ξ (t), which is imaginary.
An example of such a complex trajectory for the imaginary
Kapitza pendulum is shown on Fig. 1(d). The figure clearly
shows the oscillatory motion in the complex plane around one
of the fixed stable points of Veff .

Let us now consider the imaginary Kapitza pendulum
problem in the quantum mechanical framework. We consider
the motion of a quantum particle in a one-dimensional
time-dependent potential V (x,t), which is described by the
Schrödinger equation (with h̄ = m = 1)

i∂tψ(x,t) = − 1
2∂xxψ(x,t) + V (x,t)ψ(x,t)

≡ Ĥ (x,t)ψ(x,t). (4)

As in Ref. [6], the external potential V (x,t) is taken of the
form

V (x,t) = W (x) cos ωt, (5)

where W (x) is assumed to vanish at x → ±∞ and ω is the
modulation frequency.

Similar to the classical case, in the high-modulation regime
such a potential can be approximated by an effective time-
independent potential [5,6]

Veff(x) ≈ 1

2ω2

〈(
∂V (x,t)

∂x

)2〉
= 1

4ω2

(
∂W (x)

∂x

)2

, (6)

where the brackets 〈〉 denote time average and the error of
this approximation is O(ω−4). If W (x) is a real function,
then Veff(x) > 0, while if W (x) is an imaginary function, then
Veff(x) < 0, with Veff(x) → 0 as x → ±∞ in both cases. In
the first case, because of the quantum tunneling, bound states
are unlikely and the energy spectrum of the Hamiltonian is
continuous [17]; only resonance states may exist, as shown in
Ref. [6]. In the second case, however, it is possible to obtain
truly bound states. As an example, let us consider a Gaussian
potential W (x),

W (x) = iV0 exp(−βx2), (7)

where V0 and β are assumed real. According to Eq. (6), such
potential is approximated by the effective time-independent
potential

Veff(x) ≈ −V 2
0 β2

ω2
x2e−2βx2

. (8)

We see that despite the fact that V (x,t) is purely imaginary
zero-average potential, the frequency modulation leads to
an effective real potential. In Fig. 2 we show schematically
the correspondence between a frequency-modulated potential
and the effective time-independent potential, both in the case
of purely real [Fig. 2(a)] and purely imaginary [Fig. 2(b)]
potentials. We see that in the case of a real potential,
the corresponding effective potential is a double barrier,
while in the case of an imaginary original potential, the effec-
tive potential is a double well. In the former case we have res-
onance states, whereas in the latter case we have bound states.

III. QUASIENERGY SPECTRUM
AND FLOQUET BOUND STATES

From the effective potential description discussed above,
we expect the quasienergy spectrum of the time-periodic
Hamiltonian Ĥ (x,t) to be entirely real valued at high enough
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FIG. 2. (Color online) External time-dependent potential V (x,t)
with a Gaussian shape (left) and effective time-independent potential
for (a) a real potential and (b) a purely imaginary potential (right).
Note that in the latter case the effective potential is a double well.
Parameter values are V0 = 9, β = 0.02, and ω = 10.

frequencies, despite that the Hamiltonian is not Hermitian. On
the other hand, at a low modulation frequency the quasienergy
spectrum is expected to be complex valued. Hence a transition
from a complex to an entirely real quasienergy spectrum
is expected to occur as the modulation frequency ω is
increased. Since the effective potential description disregards
terms of the order O(ω−4), it is mandatory to check by a
full numerical analysis the transition from a complex to an
entirely real quasienergy spectrum. To numerically compute
the quasienergies ε of Ĥ (x,t), we look for a solution to Eq. (4)
of the form

ψ(x,t) = u(x,t)e−iεt =
N∑

n=−N

un(x)ei(nω−ε)t , (9)

where n runs from the −N th harmonic number to the N th
harmonic number. Substituting this expression into Eq. (4)
yields

(ε − nω)un(x) = −1

2
∂xxun(x) + W (x)

2
[un−1(x) + un+1(x)].

(10)

The equations above are 2N + 1 coupled time-independent
equations, which can be treated as an eigenvalues-eigenvectors
problem. They can be solved numerically for a chosen value
of N and after discretization in space, in order to obtain
the quasienergies ε and the harmonic components un(x) of
the Floquet eigenstates. As an example, in Fig. 3 we show
the numerically computed quasienergy spectrum of Ĥ (x,t)
versus modulation frequency ω for a Gaussian potential W (x)
[see Eq. (7)] for parameter values V0 = 9 and β = 0.02. The
figure clearly shows the transition from a complex to a real
quasienergy spectrum as the modulation frequency is increased

FIG. 3. (Color online) Real and imaginary parts of the quasiener-
gies as a function of the modulation frequency ω. The parameters in
the potential (7) are V0 = 9 and β = 0.02. The real part of ε is taken
modulo ω, so that it is always between −ω/2 and ω/2. The number
of harmonics is 2N + 1 = 5.

above the threshold value ωth � 7. From the computed Floquet
eigenstates we also checked the existence of bound states at
ω > ωth. For the parameter values used in the simulations
of Fig. 3, a single bound state is found, with quasienergy
ε ≈ −0.0008. In Fig. 4 we show a plot of the probability
function of the zeroth-harmonic component of the Floquet
bound state for ω = 10. For comparison, we computed the en-
ergy spectrum of the effective time-independent Hamiltonian
Heff = −(1/2)∂xx + Veff(x), and found for the double-well
effective potential Veff(x) a single bound state, in agreement

FIG. 4. (Color online) Probability distribution for the Floquet
bound state sustained by Ĥ (x,t). The three curves correspond to
(solid blue curve) the zero-harmonic solution |u0(x)|2 for the original
time-dependent potential V (x,t), (dotted red curve) the solution for
the effective double-well potential Veff (x), and (dashed green curve)
the solution for the δ-function potential well Vδ(x). The parameter
values used in the calculation are V0 = 9, β = 0.02, and ω = 10. The
quasienergy of the bound state is ε ≈ −0.0008.

052106-3



TOROSOV, DELLA VALLE, AND LONGHI PHYSICAL REVIEW A 88, 052106 (2013)

with the Floquet analysis. The effective-potential treatment
gives a very similar distribution of the probability function of
the bound state, as shown in Fig. 4. It should be noted that
despite the fact that the effective potential is a double-well
potential, it sustains a single bound state, rather than a couple
of bound states as one might expect at first sight. The reason
thereof is that in order to obtain a real energy spectrum, the
frequency ω needs to be large enough. Since Veff scales as
∼1/ω2 [see Eq. (6)], the resulting potential well turns out to
be very shallow. Hence it can be effectively approximated by
a δ-function potential well, i.e.,

Veff(x) ≈ Vδ(x) = αδ(x), (11)

with α = ∫ ∞
−∞ Veff(x)dx. The δ-function potential well sus-

tains a single bound state, given by

ψ(x) =
{√

μeμx, x < 0,√
μe−μx, x > 0,

(12)

where μ = −α = √−2E. In Fig. 4 we plot the probability
function of this bound state. As one can see, it reproduces very
well the spatial profile of the double-well bound state and of
the Floquet bound state.

IV. OPTICAL REALIZATION OF THE IMAGINARY
KAPITZA PENDULUM

The idea of Kapitza stabilization induced by an oscillating
purely imaginary potential, and its distinctive feature as
compared to an oscillating real potential (the Hermitian case),
can find an interesting application and a physical realization
in the theory of optical resonators [18]. In optics and laser
physics, non-Hermitian Hamiltonians commonly arise in the
description of beam propagation in optical lens guides and
resonators with transversely varying gain and loss media
[19]. Moreover, for short cavities, beam propagation in an
optical resonator can be mapped into the quantum mechanical
Schrödinger equation with a potential that is directly related to
the mirror profiles [20]. The basic idea underlying the optical
realization of the quantum mechanical Kapitza pendulum is
that an optical beam propagating back and forth between
two mirrors of an optical resonator mimics the temporal
evolution of the wave function of a quantum particle in a
potential which is periodically switched between two different
values W1(x) and W2(x). In this analogy, optical diffraction
plays the role of the quantum diffusion (the kinetic energy
term in the Schrödinger equation), whereas the transverse
profiles and the transversely varying reflectivity of the two
mirrors realize the real and imaginary parts, respectively, of
the two potentials W1(x) and W2(x) in the quantum problem.
For W2(x) = −W1(x) = −W (x), on average the potential
vanishes and basically one retrieves the quantum mechanical
formulation of the Kapitza pendulum described in the previous
section.

To formally clarify such an analogy, let us first reconsider
the quantum mechanical formulation of the Kapitza pendulum
with a square-wave (rather than sinusoidal) modulation in time
of the potential; i.e., let us assume

V (x,t) = W (x)F (ωt), (13)

where F (ξ ) is the square-wave function with period 2π [F (ξ +
2π ) = F (ξ ), F (ξ ) = 1 for 0 < ξ < π and F (ξ ) = −1 for
π < ξ < 2π ], and ω is the modulation frequency. Indicating
by ψ(x,t) = u(x,t) exp(−iεt) the Floquet eigenstate of the
Schrödinger equation with quasienergy ε [see Eq. (9)], it can
be readily shown that for a square-wave modulation in time
the function u(x,0) ≡ u(x) satisfies the following equation:

exp(−iĤ2T/2) exp(−iĤ1T/2)u(x) = exp(−iεT )u(x), (14)

where T = 2π/ω is the modulation period, Ĥ1 =
−(1/2)∂xx + W (x) and Ĥ2 = −(1/2)∂xx − W (x). The eigen-
value equation (14) is exact and holds for any value of the
modulation frequency. In the large modulation frequency limit,
i.e., for T → 0, Eq. (14) greatly simplifies by application of
the Baker-Campbell-Hausdorff formula or, equivalently, by
Taylor expansion of the exponential operators. The analysis
requires one to push the asymptotic expansion up to the order
∼T 3. Using the identity

exp(X̂) exp(Ŷ ) � exp
{
X̂ + Ŷ + 1

2 [X̂,Ŷ ]

+ 1
12 [X̂ − Ŷ ,[X̂,Ŷ ]]

}
. (15)

with X̂ = −iĤ1T/2 and Ŷ = −iĤ2T/2, it then follows that
the eigenvalue equation (14) is satisfied for

εu(x) = 1

2
(Ĥ1 + Ĥ2)u(x) + i

T

8
[Ĥ1,Ĥ2]u(x)

− T 2

96
[Ĥ1 − Ĥ2,[Ĥ1,Ĥ2]]u(x). (16)

After computation of the commutators entering on the right-
hand side of Eq. (16), after some cumbersome calculations one
obtains

−1

2
∂xxu + i

T

8
(∂xxWu + 2∂xW∂xu) + T 2

24
(∂xW )2u = εu.

(17)

The effective potential formulation in the high-frequency
regime, discussed in the previous sections, is obtained
from Eq. (17) after introduction of the new function
y(x) = u(x) exp{−i(T/4)W (x)}, which satisfies the stationary
Schrödinger equation

− 1
2∂xxy + Veff(x)y = εy, (18)

with an effective potential given by

Veff(x) = T 2

96

(
∂W

∂x

)2

= 4π2

96ω2

(
∂W

∂x

)2

. (19)

Note that the form of the effective potential given by Eq. (19)
differs from Eq. (6) just for a multiplication factor. The reason
thereof is the different temporal modulation of the potential:
square wave versus sinusoidal.

Let us now outline the optical resonator analog of the
quantum mechanical problem described above. We consider
paraxial light beam propagation at wavelength λ back and forth
between two mirrors of a Fabry-Perot cavity. As in Ref. [20],
we assume a one transverse dimension, i.e., a slab geometry.
In each cavity round trip, the optical field amplitude u(x) at a
reference plane (for example, at the right mirror plane) changes
because of diffraction in the propagative region between the
two mirrors and because of the reflection from the mirrors.
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FIG. 5. (Color online) Optical resonator implementation of the
quantum mechanical Kapitza pendulum for (a) a real and (b) an
imaginary potential W (x). In (a) the Fabry-Perot resonator consists
of two perfectly reflecting mirrors with curved surfaces and with
|
1(x)| = |
2(x)|. In (b) the resonator is made by two flat mirrors
with transversely varying reflectances R1,2(x), filled by a gain
medium. A typical behavior of R1,2(x) is shown in the inset. Mirror
spacing is d .

Mirror reflection can introduce a transversely varying phase
(for nonflat mirrors) and/or a transversely varying intensity
reflection (for variable-reflectivity mirrors), see, e.g., [18].
Let us first consider the former case, i.e., perfectly reflecting
mirrors with nonflat and generally aspherical surfaces, see
Fig. 5(a). As it will be shown below, this system realizes the
ordinary Kapitza pendulum with a real potential. A resonator
mode, by definition, is a field distribution u(x) that reproduces
itself after one cavity round trip, apart from a multiplication
factor. The resonator mode profiles u(x) are thus found as
solutions of the eigenvalue equation (see, for instance, [20])

{exp(D) exp[iW1(x)] exp(D) exp[iW2(x)]}u(x)

= exp(−iμ)u(x), (20)

with eigenvalue exp(−iμ). In Eq. (20), D = i(d/2k)∂2
xx is

the one-way diffraction operator, d is the mirror spacing,
k = 2π/λ is the wave number of light, and W1,2(x) are the
phase delays introduced by the curved mirrors. The latter are
simply related to the geometric profiles of the mirror surfaces
[20] via the relation W1,2(x) = k
1,2(x), where 
1,2(x) is
the distance (with sign) of the curved surface of the mirror
from the reference flat surface [see Fig. 5(a)]. In particular, for

2(x) = −
1(x), one has W2(x) = −W1(x) ≡ −W (x) and
Eq. (20) reads

{exp(D) exp[iW (x)] exp(D) exp[−iW (x)]}u(x)

= exp(−iμ)u(x). (21)

In this case, assuming the short cavity limit d → 0 the mode
u(x) undergoes a slight change over one cavity round trip
[20], and one may expand the operator exp(D) in Taylor
series up to first order, i.e., one may set exp(D) � 1 + D =
1 + id/(2k)∂xx in Eq. (21). Similarly, the eigenvalue is close
to unity, and thus one can set exp(−iμ) � 1 − iμ. Under such
approximations, Eq. (21) reads

−d

k
∂xxu + d

2k
{2i∂xW∂x + i∂xxW + (∂xW )2}u = μu. (22)

The eigenvalue equation (22) can be cast into the stan-
dard Schrödinger form after the change of function u(x) =
y(x) exp[iW (x)/2]. This transforms Eq. (22) into the
Schrödinger equation (18) for the function y(x), with
ε = kμ/(2d) and with the effective potential

Veff = 1

8

(
∂W

∂x

)2

. (23)

Hence a beam bouncing back and forth between two fully
reflecting and aspherical mirrors, which introduce opposite
delays W (x) and −W (x) of the wave front, basically mimics
the quantum Kapitza pendulum with a real potential periodi-
cally switching between the two values W (x) and −W (x).

To realize the resonator analog of the imaginary Kapitza
pendulum, let us consider the resonator of Fig. 5(b), which
is composed by two flat mirrors with transversely varying
reflectivities

√
R1(x) and

√
R2(x), where 0 < R1,2(x) � 1 are

the mirror reflectances [21]. Since the resonator is lossy, to
sustain a stationary mode we include a gain medium that fills
the resonator. The gain medium provides a uniform (saturated)
gain per unit length equal to g/2. As compared to the case
of Fig. 5(a), a beam bouncing back and forth between the
two mirrors experiences, in addition to diffraction in the
propagative region, uniform amplification in the gain medium
and transversely varying losses at the mirrors. The resonator
mode profiles u(x) now satisfy the following eigenvalue
equation [compare with Eq. (20)]:

{exp(D)
√

R1(x) exp(D)
√

R2(x) exp(gd)}u(x)

= exp(−iμ)u(x). (24)

Let us now assume that the reflectance profiles R1(x) and R2(x)
satisfy the following constraint

R1(x)R2(x) = exp(−2gd), (25)

with R1,2(x) taking constant values R∞
1,2 at x → ±∞ [see the

inset of Fig. 5(b)]. This basically means that if for instance
R1(x) has a well around x = 0, than R2(x) has a hump around
x = 0; see Fig. 5(b). Under such a condition, the eigenvalue
equation (24) takes the form given by Eq. (21) with the
replacement

W (x) → −i ln
√

R1(x). (26)

This means that the transverse modes of the resonator of
Fig. 5(b) with variable reflectivity mirrors satisfying the con-
dition (25) are found by solving the Schrödinger equation (18)
with the effective potential

Veff = −1

8

(
∂ln

√
R1(x)

∂x

)2

, (27)
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which realizes the quantum imaginary Kapitza pendulum,
owing to the reversal of the sign in the effective potential.

The different stabilization properties of the real and imag-
inary Kapitza pendulums, discussed in the previous sections,
have a strong impact into the stability of resonators that
trap light using either variable phase [Fig. 5(a)] or amplitude
[Fig. 5(b)] mirrors. In the former case, for aspherical mirrors
which are asymptotically flat (i.e., 
(x) → 0 as x → ±∞)
the resonator turns out to be always unstable, i.e., it does
not sustain truly stationary and confined electromagnetic
modes, but only leaky modes owing to the shape of the
effective potential. Conversely, in the latter case the resonator
with variable-reflectivity mirrors can sustain stationary and
confined electromagnetic modes, i.e., it is stable.

V. CONCLUSIONS

In this work we have proposed a generalization of the
Kapitza stabilization effect to imaginary potentials. In the
classical case, it has been shown that an imaginary oscillating
inertial force introduces two stable fixed points, which deviate
from the usual vertical positions of the pendulum. In the quan-
tum case we have shown that a frequency-modulated purely
imaginary potential may lead to an entire real quasienergy
spectrum of the non-Hermitian Hamiltonian for a large
modulation frequency, with a transition from a complex to
a real spectrum as the modulation frequency is increased.
In such a regime we found that Floquet bound states can
be sustained by an oscillating imaginary potential. This is a

very distinctive feature as compared to the quantum Kapitza
stabilization in the Hermitian case, where stabilization is
imperfect and resonance states (rather than truly bound states)
can be sustained. An application of the imaginary Kapitza
pendulum to the stability properties of optical resonators with
variable-reflectivity mirrors has been suggested. Our results
indicate that stabilization in classical and quantum systems by
oscillating potentials shows a very distinctive behavior when
the potential is allowed to become imaginary, and these results
motivate further studies on the general properties of driven
non-Hermitian systems. For example, Kapitza stabilization for
imaginary potentials could be of relevance to optics in media
with gain and loss regions [15], where Kapitza stabilization
might provide an unexpected mechanism of light guiding
and trapping [9], and to open quantum systems, such as
open two-level atomic systems interacting with near resonant
light, where the dynamics can be described by an effective
linear Schrödinger equation with a complex potential [14].
Our study might be also of interest to the broad field of
quantum simulations, where realistic proposals to implement
non-Hamiltonian (either nondissipative or dissipative) wave
equations with atoms, ions, molecules, and superconducting
quantum circuits are currently under active investigation
[22–25].
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